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List of Symbols

A: cross-sectional area of one side of the actuator

a: assigned constant

B: magnetic flux density in the gap

Bm: magnetic flux density inside the actuator

b: assigned constant

c2: assigned constant

F(x,i):attractive force between the actuator and the rim(suspended

mass)

_(s): plant dynamic equation or open loop transfer function

gl, g2, g: gap distance

go: equilibrium distance

I: input current of the actuator

I_, Io: equivalent bias current

i: controlled current

L: inductance of the actuator

_: inductance of the coil

LI: inductance of the gap

i: the length of actuator

m: mass of the rim(suspended mass)

N: number of turns of he coil

R: actuator resistance

s: Laplace transform variable

V: input voltage of the actuator

V_: equivalent bias voltage

v: controlled voltage

x: controlled distance or small perturbation distance from



equilibrium

: permeability of the actuator material

_c :permeability of free space

: magnetic flux

L.H.P : left half plane

ASPS : Annular Suspension and Pointing System



I. Introduction

A. Problem Definition

Frictionless electromagnetic suspension and levitation has

attracted much attention since 1970. Applications include high-

speed machine tool spindles, ultra-centrifuges, high vacuum pumps,

and fly-wheels for energy storage. Methods of producing

electromagnetic suspension and levitation include controlled DC

electromagnets, diamagnetic materials, superconductors, hybrid

systems, and tuned LCR circuits. A comprehensive review lecture of

electromagnetic suspension and levitation techniques can be found

in reference i.

The technique of suspension and levitation with controlled DC

electromagnets is the most advanced and successful at this time.

Many investigations are underway worldwide. Advanced ground

transportation schemes, contactless bearings for ultra-high speed,

and gyroscopes have been successfully demonstrated by many groups

of researchers.*

The Annular Suspension and Pointing System (ASPS) developed by '

the Flight System division of Sperry Corporation* is a six-degree

of freedom payload pointing system designed for use with the space

shuttle. This magnetic suspension and pointing system provides

precise controlled pointing in six-degrees of freedom, isolation of

payload-carrier disturbances, and end mount controlled pointing.

Those are great advantages over the traditional mechanical joints

for space applications. More detail discussions of the magnetic

suspension joints and mechanical joints can be found in reference

6
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Figure 1 and 2 show the ASPS designed by Sperry Corporation.

It consists of six actuators, three for vertical movements, two for

radial movements, and one for tangential movements. By the coupling

and decoupling matrices (figure 3) 2, we can carefully decompose the

command signal of each degree of freedom to each actuator

individually. In other words, the coupling and decoupling matrices

change the six-degree of freedom ASPS control system to six single-

degree of freedom ALPS control systems. Hence, we can design each

control loop separately.

figure I.
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B. Project Objectives

(i) Understanding the existing ASPS in the lab.

(ii) Model the dynamics of a single DC controlled ALPS

actuator as accurately as possible.

(iii) Re-design a controller for the single degree of freedom

ALPS control system to achieve the highest stiffness as possible.

{Highest stiffness will have the lowest motion in response to

external forces}

C. Summary

In this design, we first analyzed the assumed model of the

single degree ASPS bearing actuator, and obtained the plant

dynamics equations. By linearizing the plant dynamics equations, we

designed the cascade and feedback compensators such that a stable

and satisfied result was obtained. The specified feedback

compensator was computer simulated with the nonlinearized plant

dynamics equations. The results indicated that an unstable output

occurred. In other words, the designed feedback compensator is

fail. The failure of the design is due to the Taylor's series

expansion does not converge.

i0



II. Modelling of the single degree ASPS bearing actuator

A. Assumptions of the model

The single degree ASPS bearing actuator consists of two pairs

of magnetic coil elements, mounted in opposition, to control the

rim (suspended mass) along a single axis. Figure 4 shows the

configuration of the actuator. The magnetic coil elements have

current biasing superimposed by a controlled DC voltage source to

produce a force to suspend and point the rim. For fine pointing

application, the gap distances between the rim and actuators are

kept to a predetermined value(<0.3").

figure 4.

IT1

_ ACTUATOR NO. 1

IT2
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We derived the equation for the single ALPS bearing actuator

with the following assumptions:

(i) The force of attraction betwee_ magnetized bodies is given
!

by F = (i/2u) * B 2 * area. I
|

(ii) The magnetic flux density is _niform between the gap, or

gap distance << size of actuator.

(iii) The rim is a perfect conductor. That is, it does not

support any magnetic field strength (H) inside the rim.

(iv) There is no coupling effect between each coil elements.

(v) The controlled electromagnet behaves linearly, and there

is no loss or fringing of magnetic field.

rim has a plane area over the magnetic coil(vi) The

assemblies.

B. Derivation of ASPS Dynamics

a) B-field in the air-gap.

From magnetic circuit theory, the total current linked by the

path of an N-turn coil is given by

_ Hil i = N i (4)

Assume

(i) the magnetic material is approximated by B. = _.H_ +

B o where B 0 is a constant.

(ii) gap distant at path (I) = gap distance at path (2)

ie. g, = g2 =g

(iii) from boundary condition, B inside the coil = B in

12



the gap.

Therefore, equation (i) becomes,

H1g I + H2 g 2 + Hml = Ni

(because the

-- 2Hg + Bm- B°I = Ni rim is a perfect

_m conductor)

Bol
-- 2Hg + H°iH = Ni + --

_m Hm

AS the term Bo(i/Hm) can be equivalently assigned to

a magnetomotive force (mmf) (Bo/Um) 1 = NI o

So

2Hg + _°iH = Ni + NI o
_m

Thus the magnetic flux density at the gap is given by

r

I

Hence

B = _=
_,,(i + Io)

AS for the particular material we used for actuator, #.>>#o.

B - _N(i + I o) (2)
2g

13



b) Relationship between F, I and g

By considering the stored magnetic energy, Bohr 5 and Hayt 6 were

able to relate the magnetic attraction force to the magnetic flux

density and cross-sectional,

Fm_ 1 B 2 , area
2Po

The geometry we used is similar to Humphris _ and Groom 8, figure

4, which have two electromagnets positioned opposite the rim. This

kind of configuration is more linear if we separate the magnetic

flux density into the controlled and bias components. 7

coupling effect between the two actuators, byAssume no

equation (2) :

pj, T_(i_ + /1) poN,_(i2 + L)
el= ;B,--

2gx 2g2

Let N I = N 2 = N, I z = 12 = Io, i I = -i 2 = i = controlled current.

Therefore, the total force acting on the rim is given by

14



(2A) (B_ - B#) = 2% (BI + B2 ) (BI _ B2 )
F = F I - F 2 = 2_ ° _o

Consider BI - B 2 = _----_[ I° + i_ I o - i]
2 go - x go + x

_ [ (go + x) (Io + i) - (go - x) (Io - i) ]

2 g_ -- X 2

_N [go(Io + i - Io + i) + x(I o + i+ I o - i) ]

2 <g_ - X 2)

(2goi + 21ax) = 2 x 2
2 (g_ - x 2) go -

_oN(goi + IoX)

_[ Io + i I o - i _ (goIo + xi)
-- " + ] - 2 X 2Similiarly, BI + B2

2 go - X go + X go -

Thus F = _ (BI + B2) (BI - B2)
_o

= A [ _(go i + IoX) ] [ M_N(goIo + xi)
_o g_ - x 2 g_ - x_

_N2A(goi + Iox ) (goIo + xi)

(g_ _ x 2)2

By the Taylor's Series Expansion at the equilibrium point (xo, io),

we get

15



F(x,i) . F(X o, i o) + (x- x o, i- io)*VFl(xo ' io)

as _ -

aF _o N2A
m

ai (g_ -x2) 2
[go(goIo + xi) + x(goi + Iox) ]

OF Pa N2A

ax (go2 - X 2) 4
[(g_ - Xi)2[Io(goIo + xi) + i(goi + l_x)]

- 2(go 2 - X 2) (-2X) (goIo + xi) (goi + l_X)]

at equilibrium point (x o, i o) = (0, 0),

F(x o, i o) = 0

-_1 =.(Xo'101 3
go

_i(Xo. - P_2AI°io) 2
go

So

@F aF

F(x,i) . x * ax'_-ICXo'io_+ i * ok'=_'ICXo"io)

( PaN2AI2° )x + (._°N2AI°) i

g_ g_

(3)

c) V-I relationship of the actuator.

Recall equation (2):

B= p_(i + Io)
2g

16



By definition, _=NBA and

inductance of the gap is

L= (d0/di) 5. Therefore, the

L I = NA
dB N2A_o (4)

di 2g

and the inductance of the whole circuit is

L = L, + L2 + L¢ =

_ N2A_o + N2A_o
+ L c

291 2g2

N2 A_ ogo
-- + L c

g2 - X 2

(by 4)

By Kirchhoff's voltage law, we have

V= Ri + d (Li)
dt

di • dl , dx
= Ri + L-_ + i-_ d-_

We previously separated the voltage, current and gap distance

into the bias components and controlled components.

That is Let V = V_ + v

i = I_ + i

and x = go + x

Therefore,

17



Vb + v : R(I b + i) + L di + "dl _ I dl dxdt " ÷ * d--t

As, at equilibrium position, Vb = Rib, assume i--0, x=0

Therefore,

SO

.dL dx

v = Ri + L di + -dL dx
d t Ib-_ _-_

dL 2N2A_ogo
Consider - x

dx g_ _ x 2

dL ,, dx 2N2A_°g° _,X,,-_t " 0
Ib_-_ dt - Ib (g2o - x2) 2

Thus v( t) = Ri (t) + L_ti (t)

taking the Laplace transform on both sides, we get

V(s) = RI(s) + LsI(s)

or I(s) : 1 V(s)
R + Ls

(5)

Recall equation (3)

18



F(x, i) Ar_2Iv"N 2- A_oN2 Io
- x+ i

By Newton Second Law F(x, i) = m--

A_ _a I oSo, m d2X - A_2I_°x + i

2

Taking the Laplace Transform on both sides, we get

ms2X(s) _ Ap_2Iox(s)2 +

g2
A_oN2Io 1

g_ R + LS

v(s)

ol

AB _V2 I o

x (s) _ g_
v(s)

(.R + LS) (ms 2

go2mL

(s + a) (s2
L

(6)

A_V2Io R c 2 _ A_V2_
Let a - g_mL " b = Z" m g_

Therefore the plant dynamics of the ALPS actuator are

G;(s) A
X(s) _ a

v(s) (S + b) (S a - c 2)

Which is similar to the plant dynamic equation obtained by

19



Kilgore 9 and Jayawant 3.

Referring to Groom 2, the values of those parameters are,

Io 0.57 Amps

A i. 1400918.10 .3 m 2

4 _ ,10 .7 H m'*
_O

N 1386 turns per coil

m 7. 19712 kg

go 0. 00762 m

R 8.0

L 0.1805899 h at go

.'. a = 20.79

b = 44.3

c 2 = 280.8

Thus, the open loop transfer function is

20.79

Gp = s 3 + 44.3s 2 _ 280.8S - 12439.59

2O



d) Discussion of the plant dynamic of ASPS actuator

The open loop transfer function is a third order, type zero,

all poles plant system. The characteristic equation also contains

one positive real root, so this plant is not BIBO stable. The pole

zero diagram of the plant is shown in fig 5. In order to move the

open 10op unstable root into the stable region, we need to add

zeros in the left half plane so that the locus are pulled into the

stable region. In other word, a reshaping of the root locus

(compensator) is necessary.

0.05

0.04

0.03

0.02

0.01

-o.oi

-0.02

--0.03

--0.04.

--0.0S
--5(

pole zero IocoUon of open loop plont

l

! I I | I I

--4.0 --30 --20 - I 0 0 I 0

Reol Axle

2O

figure 5
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HI. Compensators Design

A, Cascade Compensator

The approach we used in the cascade compensator is to achieve

the goal ( shift the root locus to the L.H.P. ) with minimum

complexity. For the simplest case, by the knowledge that a pole

will pull the root locus to the right, a zero will pull the root

locus to the left and a pole-zero pair close to the origin will

decrease the steady state step error (Gp is type zero), we tried the

general lag-lead cascade compensator I°,

Go(s) = A

(s + i) (s + i)
g_ T_

with _ =10, and gain A. 10 The lag component was fixed at

(s+ 0.05)/(s+ 0.005) and the lead component was moved along the

real axis. Some root locus results are shown in appendix I. After

studying the results, we decided that we needed to increase the

compensator complexity in order to meet the design specifications.

Since the lag component only affected the steady state error,

for simplicity, we tried the dual phase advanced compensator with

u=10.

1
S + --

G:(s) - ( T )2
(%

S + --
T

Some root locus results were shown in the appendix II.

22



Interestingly, when we put the doub%e zero near to the second large
I

negative real pole of the ope_-loop transfer function, a

significant portion of the root locus were pulled into the left

half plane, figure 6. This was the result we were looking for.

800

600

400

200

0

--200

-- 400

--600

--B00

i | |

--800 --600 --@00

roo _.= locus of open loop plant

! • • , ,

I

--200 0 200 400 600 800

Real Axle

figure 6

Addition of a lag component in the compensator only reduced

the steady state step error slightly (0.02), so for simplicity, we

used the dual phase advanced compensator

G c {s) =
S + 44.3%2( l
S + 443

A block diagram is shown in figure 7. We selected a damping ratio

= 0.7, and the maximum natural frequency. The figures of merit

are,

23
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poles: -86.15 ± 87.89j, -93.24, -620.46

additional gain K = 1.011406 E 6

steady state step error = 0.06

rise time = 0.009 sec.

peak overshoot = 1.42

peak time = 0.025 sec.

settling time = 0.05 sec. ( for 5% )

gain margin = 16.75 dB

phase margin = 180 °

stiffness, _n = 15 kN kg-lm "I

stability region : 6.0939 E 4 < K < 6.8041 E 6

The step response was shown in figure 8, and the Bode plot was

shown in figure 9. Those results are obtained by matlab.

figure 7.

!
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B. Feedback Compensator DesiGn

The cascade compensator will be converted to a digital

controller later, and a computer will be involved to control the

plant. Therefore, it is natural to design the compensator using the

state feedback technique. This technique is flexible and convenient

to implement. A brief derivation of the design procedure is shown

in Appendix III. In the case where some state variables are not

accessible, an observer (estimator) may be used. Observer design

procedures are also shown in the Appendix III. This material are

come D'Azzo ,0. In this design, we used the full state feedback

technique.

A state space representation of the open loop plant is shown

in the figure I0.

figure i0

State space representation of the open loop plant

i

- /I

G

Ixiid --

I
I

1

, 1c:, I 0
= o o I -t- 0 i U,.

--r_, o o_1
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The controllability matrix is,

_=[bl_[A2b]

! I

0 _ 0 _ 20.79
! I
I I

I I
0 I 20.79 I -920.997

I I
f I

I I
20.79 _ -920.997 _ 46637.99

I I
t l
! !

as det(Mc) w 0, so Mc has full rank.

The observability matrix is

Mo= [CTIATCT I(AT)2cT]

! !

1 _o Io
! I
I I

I I
o 11 _o

I I
I !

I I
o l0 :i

l I
I l
l l

So Mo has full rank. Hence, this system is completely

controllable and completely observable.

Motivated by the performance of the cascade compensator, we

selected the poles of the control ratio to be -86.15 ± 87.89j,

-i00, which give us a good step response. A block diagram is shown

in the figure ii. The figures of merit are,

gain = 72.8546 E 3

k, = 1.01

28



k 2 = 0.021561

k 3 = 0.0001505

poles : -86.15 ± 87.89j, -I00

steady state step error = 0

rise time = 0.03 sec.

settling time = 0.045 sec.

gain margin = 13 dB

phase margin = 160 °

stiffness = 15 kNkg -I m "I

(for 5 %)

A step response and Bode plot were shown in figure 12 and

figure 13 respectivity. Those results are obtained by matlab.

figure ii.
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1,2
step response
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figure 12
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IV Computer Simulation

We simulated the state feedback design by a four order Runge

Kntta Method in the time domain. The Runge Kntta Method is a

special version of the general Taylor's series expansion.

For a general different equation,

d_ __(_)
dt

Let,

£I--£(_)

1

2 "

The next _ can be approximated by

6

with an error of fifth power term of

expansion. The h is the increment step side.

Recall,

the Taylor series
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mx_

A_o N2 (go Io + X i) (go i + I o x)

(go2 _ x 2) 2

v--ai +r di
dt

Let

x I = x = output

dx I

x2 = dt

x3 = i

x4 = t

v = u = input

So

_=x2

(go Io + Xl X3) (go X3 + Io Xl)

(go2 _ x2) 2

_3 = R 1 u-zx, +Z

_=I

Let the control law be

where r is the reference input.
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In the computer code, we need to estimate

derivative of x, which is achieved by

(x2_ , - x2_ ) / time interval

For the linearized plant dynamics equations, slightly

modification of the computer codes can do the job. The results of

computer simulation are shown in figure 14 to 19. The computer

program was written in Pascal language, and is shown in Appendix

IV.

the second

step response with linear equafion
1.2

,..

0.8

i-
.o

0.6
n

0.4.

0.2

0
0 0.05 0.1 0.15 0.2 0.25

time

figure 14
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step response with linear equation
4G

6

0

step response with linear equation
A&04

210g

8.1 CI.IS D.,2 C_S

figure 15 figure 16

step response with nonlinear ecluolion
a

• 0.! (IJ U 0,4 M U 0.2 BJI U I

step response wiJh nonlinear equcrlion
ILm

,11

U

|,i
1

figure 17 figure 18

step response with nonlinear equotlon
#.Ill

O.,IB

Ii

=4.1 _
-I_1$

"l)'Zl 0.1 C_ LI 0.4 U O.S e.7 ¢UI GA !

figure 19
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The computer simulation

increased linearly with time,

response occurred.

V. Discussion of results

showed that the

figure 17. That

Consider the plant dynamics equations, recall

step response

is, an unstable

A _oN 2 ( go Io + xi ) ( go i + Iox)

( go 2 - X2) 2

Zsfor Ixl<lgol

1 = go_4 1
x 2

(go2 _ x2)2 ( I - 7o2) 2

x 2 x 2
=go-' [ I + (--) + (__)2 +... ]2

go2 go 2

x 2 x 2
= go -4 [ i + 2(--) + 3(--)2 + higher terms ]

go2 go2

So (go Io + X i) (gol + Io x)

(go2 _ x 2)2

= go-t (go Io + xi) (go i + Io X)

x 2 x 2
[ 1 + 2(--) + 3( )2 + higher terms ]

go2

= go -¢ (go Io 2 x + go 2 I o i + go X i 2 + I o x 2 i)

x 2 _2

[i + 2(_) + 3(_) 2 ÷ ...]

__go-t [(go io2 X + go2 io i)

+ (2 I°2 x 3 + 3 Iox 2 i ÷ goxi 2) + higher terms ]
go

Obviously, the coefficient magnitude of the third terms in the

Taylor's series expansion is larger than the coefficient magnitude
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of the first term. Thus, at least, we need to include the third

terms in the compensator design. However, we cannot use the

conventional linear design theory in this situation.

Even thought we include the third terms in the design, the

coefficient magnitude of the xa terms in the series expansion

increase without bounded ( because go < 1 ). So, the Taylor's series

expansion does not exist.
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VI. Conclusion and recommendation

The plant dynamics equations are nonlinear, and the

conventional linearization does not work. We recommend to design

the compensator without linearization in the time domain.

As, in general, if we close the loop,

d_-_(._, u)
dt

u:g(r, _)

define PI to be

o" t (XI - r) 2 dt

and, minimizing the PI which is subjected to the constraint

equation,

=_(_, g(r, _) )
dt

, by the Langrange multiple method. The mathematics is too

difficult to carry out, and the analysis is left for interested

reader only.
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Appendix I

Root locus result of ueneral lead laa cascade compensator
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Appendix II

Rqo_ locus results of cascade dual phase advance compensator
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sc = [(s + 44.3)/(s + 443)]5

_¢

80O

600

4.0O

200

0

--200

--4.O0

_600

--BOO

2000

I _00

1000

600 -

}o
--500

--1000

-- I SO0

--2000
--2000

i i

--1500 --1000

oo -- [C,-t-1oo)/(.-P Iooo)]-2

|' go--.._00 0 500 1000 1 0 2000

_eQI AM;S

43



Appendix _II

State feedback desi_ procedure I0

L
Let the open-loop plant transfer function be

Co _ _"

Gp = s 3 + a2 s 2 + a_ s + a 0 u

Let, for standard notation,

dy d2y

x_ =y, x2 - de' x_ - dt 2

dx_ _ dy : x2' dx2 _ d2x : _,
dt dt dt dt 2

and

dX
-AX+J_u

dt

y= [I 0 0] X=UzX

Let the control law be

u = r -kTX

where kr= [ kI k2 k3 ]

Consider
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H(s) -
k T X(s) k r X

X(S) C T ,_

_kl xl + k2 x2 + k3 x3

xl

H(s) = kl xl + k2 sx I + k, s2xl
xl

= kl + skz + s2k3

•". G H = Co (kl + sk2 s2k3)

S 3 + a2s 2 +aIs +a o

and the overall transfer function is

z(s) _ G
R(S) 1 + G H

C o

(S 3 + a2s 2 + als + a o) + co (k_s 3 + k2s + kI)

C o

s 3 + (a2 + Cok3)s 2 + (aI + cok=)s + (ao + cokI)

using the final value theorem,

limy(t) := Yn = lim s Y(s)
t-._ s-O

•" Yn (t) = lim s co R(s)
.-o s _ + (a2 + cok3)s 2 + (aI + cokz) + (ao + cokl)

for step input R(s) = s'*

!
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2" YOB --

C O
:= 1 for zero error

a o + cok I

i e , k I = I - a--£°
co

which is fixed. By appropriate selecting the value of k T, we can

implement any desired characteristic equation as we want.

original plant:

observer design

4X
-AX+bu

dt

y=cZX

Let _ be the estimated state vector.

Let
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_2
-A2+bu+L (Y-9)

dt

=cr_

where L is the observer matrix

L = [ 11 12 13 ]

define e = X- 2

de d;f d _

dt dt dt

= AX + h u - ( A2 + h u + L ( CTX- CT2))

=ACX-2) -LC_( X-2)

= (A-Lc z ) e

By appropriate selecting the eigenvalues of e, the error of the

estimated state vector will died out very quick. A state diagram is

shown in figure 20.
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Appendix IV

Computer codes for nonlinear plant dynamics

{$N+,E+}

program project(outputo);

var

d:char;

i, j, n, nstep, e, b:integer;

{3\21\1993}

h, h2, Xlmax, X4max, t, r, u, dum:real;

k:array[l..3] of real;

x,y:array[l..2,1..4] of real;

f:array[l..4,1..4] of real;

outputo:text;

{ This is a Runge-Kntta method of order 4. }

procedure initizing;

begin

t:=0;

h:=i/i024;

n:=4;

for i:=l to 2 do

for j:=l to 4 do

begin

x[i,j]:=0;

y[i,j]:=0;

end;

for i:=l to 4 do

for j:=l to 4 do

{initial time}

{incremental time step}

{number of equations}

{initial value}
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f(i,j]:=O;

nstep:=4096;

r:=l;

k[l]:=l.01;

k[2]:=0.021561;

k[3]:=0.0001505;

end;

{number of step}

procedure get_value_f;

begin

f[e,l] := x[b,2];

fie,2] := (382.3996e-6)*(4.3434e-3 +

dum

u

{control law}

f[e,3] := -44.2995*x[b,3] + 5.5374,u;

fie,4] := i; { x[4]= time }

end;

x[b,l]*x[b,3])*(O.OO762*x[b,3] +

0.57*x[b,l])/(sqr(sqr(0.00762) - sqr(x[b,l])));

:= (y[b,2] - x[b,2])/h; {estimated the second derivate}

:= r - (k[l]*x[b,l] + k[2]*x[b,2] + k[3]*dum);

procedure RK4SYS;

begin

h2:=0.5*h;

for j:=0 to nstep do

begin
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for e:=l to 2 do

begin

b:=e;

get_value_f;

for i:=l to n do

x[2,i]:=x[l,i] + h2*f[e,i];

end;

e:=3;

get_value_f; {get f3}

for i:=l to n do

x[2,i]:=x[l,i] +h*f[e,i];

e:=4;

get_value_f; {get f4}

y[l,2]:=x[l,2];

y[2,2]:=x[2,2];

for i:=l to n-i do {compute next x(t+h)}

x[l,i]:=x[l,i]+h*(f[l,i]+2*(f[2,i]+f[3,i])+f[4,i])/6;

x[l,4]: = t+j*h; {advance solution}

if j mod 64 =0 then {write the result}

begin

for i:=l to n do

' ');write(outputo,x[l,i], ,

writeln(outputo);

' ',X[I,4]);writeln(x[l,l], ,

end{if loop}
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end;{for j loop}

end;{RK4SYS}

begin {main}

assign(outputo,'a:\pl.dat');

rewrite(outputo);

writeln(outputo);

initizing;

repeat

RK4SYS;

write('want change Y/N ?');

readln(d);

if d='y' then

begin

writeln(,kl=,,k[l], ' k2=',k[2],

write(' enter kl,k2,k3');

readln(k[l],k[2],k[3]);

end;

until (d<>'y');

writeln(outputo, , Job completed.

writeln(' Job completed.');

close(outputo);

end.

• k3=,,k[3]);

,);
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